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Abstract—A binary mixture theory is developed for heat conduction in a unidirectional, fibrous composite
containing a two dimensional periodic array of cylindrical fibers of arbitrary cross section. The case
considered concerns a class of problems for which conduction occurs primarily in the direction of the fiber
axis. Model construction is based upon an asymptotic scheme wherein the ratio of transverse-to-longi-
tudinal diffusion times is assumed to be small: this premise, and the problem class studied, are appropriate
for many composites designed primarily for thermal protection. The resuiting theory. which retains
information on the temperature distribution in the microstructure, contains a mixture interaction coefficient;
the latter is determined from the solution of a time-independent boundary value problem in a unit cell. A
variational principle-based finite element method is proposed for the solution of this boundary value
problem. Consequently. the theory is closed in the sense that no unknown coefficients exist, i.c. the theory
is compietely determined by the material properties and geometrics of the constituents.

Numerical analyses are carried out for several microstructural geometries of practical interest. The
results indicate that, for achievable volume fractions, the concentric circular cylindrical approximation
often used in practice provides an adequate measure of global and averaged local temperature fields for
composites containing circular fibers in a hexagonal array, and square fibers arranged in a square array. It is
found, however. that such an approximation may not be accurate for composites containing rectangular
fibers in a similar unit cell. Here a parametric study reveals that the interaction coefficient is a strong
function of the unit-cell aspect ratio.

INTRODUCTION
The influence of environmental factors on advanced composite materials has received
considerable attention in the past several years (e.g. see [1-3]). Among these factors, tempera-
ture and moisture are primary environmental conditions that affect the behavior of a structural
composite during its service life. It is evident that the first step in the analysis of such
phenomena is the prediction of thermal and/or moisture fields in the composite.

In this paper the problem of thermal diffusion in unidirectional fibrous composites is
addressed. In particular, a binary mixture theory is developed for a class of problems, typical of
many materials utilized in primary thermal protection systems, in which heat conduction takes
place primarily in the fiber axis-direction. This effort generalizes the theoretical development
described in [4] to include general two dimensional cells with cylindrical fibers of arbitrary
cross section. In [4] a unidirectional fibrous composite with hexagonal periodic microstructure
was modeled by approximating a typical cell by concentric circular cylinders.

As in earlier works on diffusion in laminated composites[S, 6], the mixture theory con-
struction technigue is based upon an asymptotic method introduced by Hegemier[7] and
successfully applied to the solution of wave propagation and diffusion problems|[4,8,9]. A
unique feature of this method is the retention of the heterogeneous character of the composite
and the description of temperature fields in each constituent. Moreover, the approach is
advantageous in that all constant and interaction terms associated with the theory are explicitly
determined from the knowledge of the geometry and material properties of each constituent. In
contrast, most general mixture theories, as for example discussed in {10}, require a series of
experiments for the evaluation of the above quantities.
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It should be noted that a self-contained heat conduction theory for composite materials has
been recently developed(11] using a variational formulation. A crucial step of the method is an
a priori assumption concerning the microstructure temperature field and the relation between
micro- and macro-temperature fields.

In this paper, however, the microstructure temperature field is, via the asymptotic procedure
adopted, obtained as a solution to a well-posed time independent, microstructure boundary
value problem in a unit cell. This solution is obtained for arbitrary geometries by use of a finite
element technique based on a variational principle proposed herein. From this solution one can
determine the mixture interaction coefficient which relates heat transfer between the fiber and
the matrix to the difference of the averaged temperatures in the constituents. With a rationally
determined law of heat conduction for “‘partial” heat flux quantities, and the interaction
coefficient, the mixture theory furnishes differential equations for an initial boundary value
problem in which the axial coordinate and time are the only independent variables.

Because of the above reduction of the number of spatial coordinates from three to one. the
mixture equations offer an attractive economical alternative to a direct numerical attack on the
original problem.

It should be emphasized that, for the problem considered in this paper, there are layers
adjacent to the boundary wherein the diffusion process is three dimensional. The mixture
theory proposed here yields an outer solution, strictly valid in a region outside such boundary
layers, the thickness of which is expected to be on the order of the composite microdimension.
However, as evidenced by numerical results presented in an earlier paper[4], the accuracy of
the mixture theory solution, both within and outside the boundary layers, is of higher order than
that associated with the elementary effective diffusivity theory which treats the composite as a
homogeneous material.

Following presentation of the basic theory, the proposed procedure is used to examine the

waccuracy of the axisymmetric approximation empioyed in{4] for the case of the circular fiber in{

a hexagonal cell. Subsequent to this, the case of a square fiber? in a square cell is studied and
the values of the obtained interaction coefficients are compared with resuits based on the
axisymmetric approximation and equivolume fractions. Finally, the results of a parametric
study are presented to exhibit the influence of aspect ratio in the case of a rectangular fiber in a
similar rectangular cell.

FORMULATION
Basic relations
Consider a periodic, two-dimensional array of unidirectional cylindrical fibers of arbitrary
cross section embedded in a matrix, as illustrated in Fig. i(a). Let a “‘cell” be associated with
each fiber as depicted in Fig. 1(b). Each such cell consists of regions A" and A® occupied by
the fiber and matrix, respectively. The interface between-the-two constituents shall be denoted
by 4. and the outer boundary of the cell by 4.

Fig. l{a). Geometry of fiber-reinforced composite and coordinate system.

fRectangular fibers (actually-fiber bundles) resuit from the manufacturing processes associated with such materials as
carbon—carbon composites.



A mixture theory for thermal diffusion in unidirectional composites 725

4 i2
, €
/ )
, 5
_ _(2)
% 50
!
i K(l)
N\
() > X,

1

/

!

/

Fig. 1(b). Cell geometry A= AVUA®,

With respect to rectangular Cartesian coordinates X;, X, X; as shown in Fig. 1(a), let the
composite occupy the domain 0= 53 s L, —e < §, <o, —o <, <. Let the two constituents in
each cell be homogeneous and isotropic, and assume that the interface is perfectly bonded in
the sense that any interface thermal resistance can be neglected. Finally, let the initial
conditions, and the boundary conditions on %;=0, L, be such that the temperatures field is
similar in each cell. ‘

In view of the last premise, it is sufficient to consider a typical cell with zero heat flux
normal to the boundary €. Consequently, the basic equations for the temperature fields T’ and
heat flux vectors Q' are

(a) Conservation of energy:

':,ﬂ)____ﬁ(a;fwa) on Al )
(b) Fourier heat conduction law:

Q_(a) = _E(a)f'(.‘q) on jm' (2)
In the above the superscript a = 1, 2 refers to the fiber and matrix, respectively. The quantities
i, k denote heat capacity and thermal conductivity, respectively. Lower case Latin indices
imply indicial notation and the usual summation c_onventiog, with range 1-3 unless otherwise
noted. The notation ( ); = 3( )/a%; and ( )= ( )/at where t denotes time.

In addition to (1) and (2), the complete problem specification requires

(c) Symmetry conditions:

Qi(Ziii(Z) =0 on @ (3)

where 7® is the unit outer normal to the boundary of A® (note that 5,® = 0 since the fibers are
cylindrical);

(d) Interface conditions:

TO=T%  Q""M=Q*%" on ¥ @)

where #'" is the unit outer normal to the boundary of A" (note that 7" = 0);
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(e) Initial conditions at t =0 and appropriate boundary data at x;=0, L.
Scaling procedure

Equations (1)-(4) and conditions (e) specify a well-posed problem involving three spatial
variables %; and time, t. The objective of the subsequent analysis is to derive simplified
differential equations governing the macroscopic diffusion process which involve only one
spatial dimension (%) and yet reflect, at least approximately, the effect of conduction on the
microscale. To this end. let A and A be associated with typical macroscopic and microscopic

observational dimensions, respectively. The quantities A and A may be defined in terms of
characteristic thermal diffusion times in the longitudinal and transverse directions according to

far = B kom, i) = fom B K (5a)

where i, k) denote mixture heat capacity and thermal conductivity: these variables wil_! be
defined later. In addition to (5a), it uj!l be convenient to introduce a mixture heat flux Qum.
based upon a reference temperature T, according to

Q-(m) = E(m)T/A. (5b)
and a parameter ¢,
€ ®A/A = (Fa)/ta)" (5¢)
which represents the ratio of micro-to-macro dimensions of the composite.
With the aid of the foregoing definitions, the following nondimensional variables are now
defined:
(X3, €X1, X2} (B3, 5, £)A,  t =1L,

(Ql‘“'- EQIW'v eQ'.'“”) = (é.’(“,v 61(“” él(a,),é(m’ (5d)
T = 'I"(al/ff, F-(a)sll(a)/lz(m)s k'@ = E(a)”?(ml-

Under (5d). the basic equations can be rewritten as follows:
(a) Conservation of energy:

Qi =-p T on A" (6)
{b) Fourier law of heat conduction:
Q. €. EQ) =k T, TF, TS on A M
(c) Symmetry conditions:
Q®v¥=0 on ¥ (8)
{d) Interface conditions:
T"=T% Q0" "=Q"»" on 4 )]

te) Initial conditions at t = 0 and boundary data on x; =0, L/A.
In the above A'*, #, € denote A", 4, €. respectively, in nondimensional coordinates; the
vectors v/’ are outer normals to the boundaries of A'*'; partial derivatives are now defined by

()i =a0)ax;, ()= a()/ar.

Mixture equations

Mixture equations for the diffusion process are obtained by averaging (6) over the cross-
sectional area A", For this purpose, let
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fex, = ff“"(xhn. x3, 1) dx; dxo. (10)

Integration of (6) according to (10) furnishes, with use of Gauss’ Theorem,
(A(a)QR(aa)).3+§ Qi‘a)Vi‘a) ds = —;L‘MA(U'T(”, (] l)
aA(c)

where 3A’ denotes the boundary of A“’. With the aid of the boundary conditions (8) and (9),
eqn (11) can be written in the standard binary mixture form as

QYp +p7 = —p
Q¥ +u T =p, (12)
In the above equation
QP = n@Q e, plP = ey (13a)
are “‘partial” heat fluxes and material constants, where
n'=AUA+AD) = AUA" + AP) = A A (13b)

is the volume fraction of each constituent, and

P =A"£ 0 ds =A—|f QPv" ds (14)
$

is an “‘interaction” term reflecting heat transfer from the fiber to the matrix.

At this stage the mixture eqns (12) are exact. Approximations arise when one attempts to
model the Fourier expressions for heat conduction, and the interaction term. The theory
developed in[4] and pursued in this paper has the distinct advantage that both heat conduction
and interaction relations are explicitly given as functions of the averaged temperature T,
{a =1, 2) based upon a knowledge of constituent geometry and properties.

Asymptotic expansions
A fundamental premise is now introduced: the ratio of characteristic thermal diffusion times
in the transverse and longitudinal (fiber axis) direction is small compared to unity, i.e.

€= ta/ta,=(A/AN <. (15a)

Equation (15a) is appropriate for many composites used for thermal protection.
The premise (15a) suggests the following regular asymptotic expansion for all dependent
variables. denoted by G'*"

G'lx) xnXat €)= 2, €GN Xy Xa. Xa 1), (15b)

n=0

If (15b) is substituted into the governing eqns (6) and (7) and the coefficients of similar order
of € are equated. one obtains a system of equations for each n =0. 1. 2.... In what follows a
mixture theory is developed based upon the lowest order system.

MIXTURE THEORY BASED ON LOWEST ORDER SYSTEM
The lowest order system corresponding to (6) and (7) is

Qi =~ "' Tuy. (16)
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Yo ==k Tigs (17a}
o =Ti§.=0. {170

Equations (17b) yield
T@ = Ti§(xs, 1) (18)

Thus. eqn (17a) may be averaged according to (10) which furnishes, to lowest order accuracy,
Q:'% =~k T x5, 1). (19
To “close™ the mixture formulation (12), the functional dependence of the interaction term
P on the averaged temperatures T'**’ must be determined. For this purpose it is necessary to
consider Q). TS, (j =1, 2), and to satisfy the continuity of temperature, eqn (9), including
O(e?) terms, as has been discussed in detail in{7].
To begin this task, one finds, from (7) and (15b), that
Q1% Q%) = k' (TS, T, (20)
Next, with use of (17)-and (20), eqn (16) can be written
kT =0 xs, 1), (=12 21

The functions ¢'*(x;, 1) can be related to the interaction term P, defined by (14), by integration
of (21) over A"’ with use of Gauss’ Theorem and the symmetry conditions (8); the result is

n‘”(p‘”=-P. n(Z)‘p(!)._.P' (22)
{a) 3

Thus, one obtains the following equations for the functions T{§) in the x,, x; plane:

nk"THY; =P on A", (=12 (23a)
nkATR); =P  on A%, (=12 (23b)

The appropriate boundary conditions are, from (8) and (9),

TEv®=0 on ¢ (=12 (24)
T )+ TH = :a(x,, H+eTH  on 8 (25a)
k“’T"’ f Ry Tm v on £, =12 (25b)

The solution to the above boundary value problem is unique within a function H{x;, t).
Without loss in generality one can combine this function with T§)(x,, ¢) as follows:

T8 x5, )= TE (x5, )+ € H(xs, ). (26)

Under (26), uniqueness for the field T{3 can now be obtained by setting T} = 0 at some point
on A""; for convenience the point O € A" is selected; thus,

TH=0 atpoint O€A™, 27

It is noted that (25a) represents a jump condition for the dependent variables T3 in the
foregoing boundary value problem, i.e.

TR-TE=HTH-TH on & (28)
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A more convenient formulation of this problem without a jump condition can be obtained by
introducing new field variables T**’ as follows:

PT*'=T8:  PT*=T&+5(TR-T) 29)

The boundary value problem in terms of the new dependent variables T* is

n%THY =1 on A", (=12 (30a)

nkAT* =1 on A%, (=12 (30b)

T*WP=0 on ¥ 31)

THD= T2, ROTHO0 = OTXDG on  g(G=1,2); (32)
T*"=0 atpoint O€A" (33)

The solution of the problem posed by (30){33) will be of the form
T = TH")(x, xa). (34)

Once these functions are known. the temperature field can be written to O(e?) accuracy using
(26) and (29); thus

TV = T8xs, )+ 2PT*"(x), x2) + O(e*),
T = 1§00, 0+ € {[PT*01.x) - 2 (T8- T} + 0et
= To)(x3, ) + € PT*¥(x), x2) + O(e"). (35)
Upon averaging (35) according to (10) one now obtains
T (x5, t) = Tl(xs, 1) + 2 PT*, (36)

With use of (36), the interaction term can be written as a function of the averaged
temperature T'*%(x, 1):

P = [T x3, 1)~ T?(x3, 1)}/€? (37a)
where
l = {Tﬂlal_ T*Qﬂ))-). (37b)

The preceding development (eqns 12, 19 and 37) completes the mixture formulation of the
diffusion process under the premise that €2 < 1. The main result is the expression (37b) which
can be used to determine the interaction coefficient { from the solution of the time independent
problem defined by (30)~(33) over the unit cell. For future reference this problem will be termed the
microstructure boundary value problem (MBVP).

SOLUTION OF THE MICRO BOUNDARY VALUE PROBLEM

Variational principle

In general, it is difficult to obtain an analytical solution to the MBVP. As an alternative, a
finite element procedure, valid for arbitrary two-dimensional cell geometry, is proposed. A
prelude to this procedure is a variational principle, which is developed in this section.

At the outset it is noted that, if the effect of fiber geometry is to be adequately modeled, it is
essential that both interface conditions (32) be satisfied. For this reason a modified Reissner-
type variational principle is utilized. A significant feature of this principle is that it allows
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arbitrary variations of heat flux along the constituent interface and hence mitigates the
kinetmatic constraint-difficulty associated with the usual extremum principles{12]. Consider the
functional

a=|

II= 2 f] [% k(a)T?}alT?}a)_'_(;(]a) Tt(c)] dA
A(u)

+§ Q*[T*(H__T*(Z)] dS, (j= ]‘2) (38)
3

which is defined in terms of T**' on A’ and Q* on #. It is now shown that the microstructure
boundary value problem for T*® follows from the requirement that II be stationary with
respect to arbitrary variations of T**' and Q* where Q* is a Lagrange multiplier which
physically represents heat flux normal to the boundary $. Indeed, on setting the first variation
of I equal to zero we obtain

M= 5_‘, {-ff [k‘"’T?}?'-(—';}';);] GT*“"dA}
e

a=t
+ i‘ k‘”T‘_’}”v;‘”&T"Z’ ds — 2] (_l)u i [Q*+ kmrTf}c)V;n] 8T*(a) ds

+3§ [T~ T*8Q*ds, j=1.2
k4
=0. (39

From (39) it is obvious that (30)~(32) are Euler equations for extemization of the functional II.

The only *“kinematic™ constraint to be imposed on T*" for the uniqueness of the solutions
is (33), as discussed in the last section. The other kinematic constraint, defined by (32a). has
been eliminated by the introduction of Q* as a Lagrange mulitiplier.

Finite element discretization

To use the variational principle of the last section for a finite element analysis, the closure of
the domain A"+ A®, which includes , is partitioned into unions of closed subdomains or
elements overlapping only at the interelement boundaries. The field T™*'(r) is interpolated by
nodal values ¢/’ = T**(r/) in each finite element A{Z), where (r;) is the position vector of the
Ith node of the element A{). Thus

(@) {a)

T**'(r) = [N\(r), Nxr)... ] :p =Ny on  AQ (40)

where N(r) are interpolation functions used for discretization of T in the domain A!) such
that

Ni(r;)=8y, 1, EAL). 41
Since the functional II contains additional terms defined on the interface, one-dimensional
interface elements must also be used. It is most convenient to choose these elements to be the

boundaries of those 2-D elements A{s) which are partly bounded by the interface .$. On such an
interface element $,

T = (N, N 1) 2 = Red (42)

(e)
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¥,

Q*(ry= [Nl(l')‘ N:(l‘) | ¥, = ﬁlr)i}lel (43)

ie}

where Nj(r) are shape functions used for interpolation along the interface such that
Nitr)) =8y, 1, €%, (44)

Based on (40). the derivatives T*!*' (j = 1, 2) are discretized by

T _[NuNaro ]
(T} =[Ny et m et “3)

At this point it is appropriate to note the degree of continuity required of the interpolation
functions so that conforming elements are obtained. As a minimum, the shape functions N; must
be of class C' on A{), with continuity of functions imposed along the inter-element boundaries.
The interpolants N; along the interface are required to be at least of class C° within each
boundary element.

With (40)-(45), the discrete form of the functional I1 in (38) can be written as (with
A¢! C clos. A",

aT =" T
=3 3 {Jet ket + S otesiz)

a=| (ql
u-\
+ 2 WH @ -6 (46)
where
Kgf;:ffk‘ )B!c rer & {47a)
Afg}
e = f f N{, dA (47b)
Al
ﬁm=j &(Tuﬁmds 47¢c)
Frey

are various quantities defined on the element level. By the usual finite element assembly
process, corresponding global level quantities can be obtained, so that, finally,

()T grta) o) - I) (31 (a)} T§3T s =01} _ !2)
M= 2{ K% +—5re +¥TH (¢ ). (48)

a=1

It is convenient to number the global system such that interior nodal temperatures ¢**’ appear
as the leading components of the vector ¢'*, i.

@ = *"""’} 49
® {é(n) . 49)

Equating to zero the first variation of II in (48) with respect to ¥ and ¢’ leads to

{a)  fa} (—I)a L3 O a{o 9}{0}=
K‘°+_n"'“_"{1)onwo (50)
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ﬁT(aH)_é(D)=0‘ (5”

In (50), K"’ and ="' must be modified because of the kinematic condition (33). Let point O be
chosen as the first node, then

KiN=8n n'"=0, 2sNs=M" (52)

where M‘*’ denotes the total number of the nodal degrees of freedom in A’ To retain the
symmetry of the “stiffness™ matrix K'®’ it is preferable to modify the first column also; thus

K¥ =0, 2=N=sM" (53)
without any loss of generality.

Further details of the computational technique are best explained by partitioning K'*’, '’ in
accordance with (49), thus,

N K(a) K(g) . ,r.mn
o i e ]

With (54), egqns (50) can be written in a more explicit form, which is

—1\(@)
Kife* +KPe" + (—,,1%7' ™ =, (55a)
Kne**'+K%'¢ “"+( ” FO-(-1H¥=0, a=12. (55b)

From (55) we obtain
¢t(a\ - _K(ﬁ)—lxtﬁi‘alal - (; la) K(Ial)—l,rﬂa)‘ a=1,2. (56)

On substitution of (56) into (55b), the following equations are obtained for the interface
quantities

D(a)é(a)+(_l)a [T H*] = a=1,2 (57)

where
D®' =K' - KS'[K'T] Ko, (53a)
7@ = e - KK (580)

With proper choice of shape functions, the matrix H is positive definite and, hence, it follows
from (51) that

‘a(l) ‘ﬁ(’) ( 59)
Equation (59) can be used to eliminate ¥ from (57) to obtain

Q 3]
[D"'+D‘z’]¢“’+[——m %] 0. (60)

By virtue of the constraint (33), the matrix [D'"+ D] is nonsingular provided conforming
elements are used for discretization. As a res... we can solve (60) for ‘",

)
‘ﬁ(” [D(l)+D(1)]‘ { —%!T} (61)
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Substituting (61) into (56) we obtain T**, (a = 1, 2) and by the averaging process we get T*
which are required for the calculation of the interaction coefficient { defined in (37).

So far we have considered the entire unit cell in the development of the theory and the finite
element discretization procedure. However, for computational efficiency, any symmetry condi-
tions, if they exist, must be fully exploited. Since no heat transfer occurs across the lines of
symmetry, no major modification in either the theory or the discretization procedure is required
even if a reduced cell obtained from symmetry considerations is used for computations.

MIXTURE QUANTITIES AND RECOVERY OF MICROSTRUCTURE

With the complete formulation of the mixture equations, the appropriate mixture heat
capacity fi and mixture thermal conductivity k.., introduced for scaling can be found in the
following manner.

On substitution of (19) and (37) into (12) we get

k”p)ng)— “(lp‘)T(la) = ([T(la)__ T(Zn)]/ez (62a)
k(ZP)Tg;n_ “(2p)T(2a) = _{[T(Ia) - T(h)llfz. (62b)

Elimination of either T’ and T%* from (62) yields
[(k””+ kl2p))TSr3a)_ (“(Im+ “(Zp))viwca)_,, O(Ez)] =0. (63)

Equation (63) suggests the following definitions for mixture thermal conductivity and heat
capacity

E(m) = n(l)i(-(l)+ n(z)k.(zl (648)
’1("‘, = n“’ﬁ.“'+ nmﬁ(z). (64b)

It might be noted here that with the above definition of mixture properties the nondimensional
constituent properties k' and u‘* are of order unity for a practical range of volume fractions.

The methodology for the use of the theory presented here is the following. For a given
composite, the MBVP is solved by the finite element procedure to obtain the fields T** and
the iteraction coefficient { defined by (37). This interaction coefficient can be used to calculate
the average temperature fields T'°*(x, t) from (62) with appropriate boundary and initial data.
To recover the temperature microstructure one first calculates

Ox3, 1) = T (xa, )= [T =TT g=] or 2 (65)

from (36). Finally, the fields T(x;, x5, x3, t), correct to O(e?), can be obtained from (35).

NUMERICAL RESULTS

The finite element procedure described in this paper has been used for the solution of the
temperature microstructure problem (30)~(33) for the interaction coefficient for a variety of
geometries and combination of material properties. Conforming triangular elements with six
nodes and quadratic interpolation functions were used for discretization of the fields T** in
the fiber and the matrix domains in the unit cell. For the heat flux quantities on the interface,
compatible quadratic interpolation functions were used.

To estimate the size of the mesh required to obtain reliable results, the interaction
coefficient { was calculated for a composite containing rectangular fibers in a similar unit cell,
using a coarse and a fine mesh shown in Fig. 2(a, b). As can be seen in the figure, the corner of
the fiber was rounded off to remove the singularity in the solution that would otherwise occur.
Although the number of degrees of freedom of the two finite element models differs by more
than one hundred, the computed values of interaction coefficient were within 0.06% of each
other. Similar calculations for other values of volume fraction yielded a difference of no more
than 0.15% between the interaction coefficients calculated using a fine and a coarse mesh,
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Fig. 2a). Coarse mesh for solution of MBVP for rectangular fiber in a similar unit ceil, (A\/A;=2.
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Fig. 2(b). Fine mesh for solution of MBVP for m.ﬁw in a similar unit cell, (332> 2, d,/A, =04,

respectively. With this check on the convergence of the numerical solution, subsequent
computations were conducted with meshes similar in size to the “fine” mesh of Fig. 2(b).

In an effort to check the validity of the concentric circular cylinders approximation used
in [4] for circular fibers in a hexagonal array, the interaction coefficient was calculated as a
function of fiber volume fraction and thermal conductivity ratio. From the results, shown in
Fig. 3, the somewhat expected conclusion can be drawn that for a practical range of fiber
volume fraction the theory presented in [4] can be used without any significant loss of accuracy.

For calculation of the interaction coefficient, the concentric circular cylinders approximation
based on equal fiber volume fraction can also be used for composites containing square fibers
arranged in a square array. This is borne out by the resuits shown in Fig. 4. The calculations for
this figure were conducted by rounding off the corner of the fiber by a quarter circle whose
radius was arbitrarily selected to be 10% of the fiber width.

The final set of calculations was conducted for composites containing rectangular fibers in a
similar unit cell. The results for three values of the slenderness ratio of the unit cell are
presented in Figs. 5(a~c). In these cases the corner was rounded by a quarter circle with radius
equal to a quarter of the smaller of the sides of the rectangular fiber. As can be seen from these
figures, the interaction coefficient is significantly overestimated when the concentric circular
cylindrical approximation is used. This discrepancy illustrates the importance of the type of
calculations reported here.

As has been noted previously, the fields T**'(x,, x-) needed to calculate the interaction term
can aiso be used for the calculation of the temperature distribution in a unit cell. From (35).
(37a) and (65) we have

T(al(Xth,X;, I) = T“'“’-}-{{T”"’ - T(Za)][Tmat_ T*«aal] (66)
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Fig. 3. Interaction coefficient for a hexagonal cell with a circular fiber.

Fig. 4. Interaction coefficient for a square cell with a square fiber.
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Fig. 6. Isothermal contours of {T*' in a square cell (ki/k~ = 10).
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Fig. 7. Isothermal contours of {T*’, (a = 1, 2) in a rectangular cell (k,/k2= 10, A,/A; = 2).

in the r.h.s. of the above equation, the only quantity dependent upon inplane coordinates x, and
xz is T**. It follows, therefore, that curves of equal T**’ are also isothermal lines within the
framework of our theory. For this reason, and to illustrate the type of temperature micro-
structure that can be obtained from the mixture theory, contours of equal T*%, suitably
normalized, are given in Figs. 6 and 7 for the case of rectangular fibers in a similar unit cell. Of
course, the discontinuity in the slope of these contours arises because of the difference between
the thermal conductivity of two materials.

CONCLUDING REMARKS

A binary mixture theory has been constructed for heat conduction in the direction of the
fiber axis for unidirectional fibrous composites. The theory contains information on temperature
microstructure. A mixture thermal property, the interaction coefficient, that relates the heat
transfer between the fiber and the matrix to the difference between the average temperatures of
the two constituents, is calculated from the solution of a static microstructure boundary value
problem defined over the unit cell. A computational approach to the solution of the micro-
structure boundary value problem has been described and examples of its application have been
given. The numerical results indicate that the concentric circular cylinder approximation is
adequate for the prediction of the interaction coefficient and, consequently, the average
temperatures for some geometries. However, if it is desired to obtain some information on the
temperature distribution within the unit cell, it is necessary to solve the microstructure
boundary value problem. Even though additional computational effort is needed, the ability of
the theory to predict microstructure is unmatched by any other continuum model of heat
conduction in composites.
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